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ABSTRACT: In this work we propose a new constitutive
theory to estimate the stress–strain response and the soft-
ening induced by the Mullins effect during the stretching
of filled elastomers. In this study, we used the Mullins
and Tobin concept where the filled elastomers are treated
as composites with hard-domains and soft-domains and
the softening is due to the hard domain transformation
into soft domain during stretching. Gent strain energy is
assumed to represent the behavior of the unfilled elasto-
mers. This strain energy representation is then reformu-
lated in order to consider fillers effect in the case of filled

elastomers. The proposed approach takes into account the
effect of the type of carbon-black filler and of its volume
fraction on the mechanical response and microstructure
evolution during stretching. The predicted results are com-
pared to Mullins and Tobin experimental data, and good
agreements are obtained. VC 2012 Wiley Periodicals, Inc.
J Appl Polym Sci 000: 000–000, 2012
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INTRODUCTION

For many industrial applications, elastomers have
been reinforced by different kind of fillers like car-
bon-black in order to improve the material mechani-
cal properties such as stiffness, rupture energy, tear
strength, tensile strength, cracking resistance, dura-
bility, owed to filler–filler and filler–elastomer’s
interactions. Filled and unfilled elastomers show dif-
ferences in their stress–strain response under load-
ing. Particularly, strain-induced stress softening phe-
nomenon during cyclic tension, known as Mullins
effect, is more pronounced in filled elastomers. For
unfilled elastomers, Mullins1 experimental data
showed that previous stretching has relatively little
effect on the stress–strain properties, this implies
neglected softening. This phenomenon was observed
at the first time by Bouasse and Carrière2 and sev-
eral subsequent authors’ studies showed that the
phenomenon does not have one single interpreta-
tion. Blanchard and Parkinson, and Bueche3–5 sug-
gested that increase in stiffness obtained in filled
rubber to be a result of rubber-filler attachments pro-
viding additional restrictions on the cross-linked

rubber network and Mullins effect resulted from the
breakdown or loosing of links between the filler par-
ticles and the rubber chains. This idea was extended
by other authors like Simo and Govindjee6–8 by con-
sidering damage in the material network. On the ba-
sis of this idea of damage induced softening, Miehe
and Keck9 developed a constitutive model for mate-
rial’s behavior, and more recently others authors
proposed a theory of network alteration for the Mul-
lins effect.10,11 They adopted the breakdown of links
inside the material, which decreases molecular chain
density and increases the average number of mono-
mer segments in a molecular chain.
However, for Mullins and Tobin12–14 a filled rub-

ber is composed of two domains, one hard and one
soft. During the application of stress, most deforma-
tion happens in the soft domain and the hard do-
main makes little contribution to the deformation
and may be broken down to form soft domain by
the application of stresses in excess of those previ-
ously applied. Hence, the soft domain volume
increases with increased stretching. Mullins also
showed that the samples of filled rubber, which
were previously stretched have their stress–strain
properties approach those of pure rubber due to the
destruction of some substantially hard domain,
which increased the stiffness.1,14 In addition, it was
also observed that filled rubbers recover partially or
totally their original stiffness very slowly, after
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several days at room temperature. This recovery is
accelerated when the temperature is high.4 Hard-do-
main and soft-domain concept was used by Johnson
and Beatty.15 They considered the hard-domain like
clusters of molecular chains held together by short
chain segments, entanglements, or intermolecular
forces. Hence, during material stretching, chains are
pulled from the clusters and hard-domain is trans-
formed into soft domain. On the basis of the hard-
to-soft transformation, Qi and Boyce16 proposed a
constitutive approach, based on a modified form of
Miehe and Keck9 for softening and the eight-chain
model, to predict Mullins effect. Klüppel and
Schramm17 also proposed a generalized tube model
for rubber elasticity and stress softening, which com-
bines a non-Gaussian tube model of rubber elasticity
with a damage model of stress-induced filler cluster
breakdown. Other observations from Mullins, James
and Green showed that, the softening is not identical
in all directions and it is less in perpendicular direc-
tion of the stretch than in the stretch direction.18,19

In addition to filler particle volume fraction, a
number of state variables influence the magnitude
of the contributions of the effects to the mechanical
response of filled elastomers: fillers size, type, and
shape20,21 or the fillers aggregate.22,23 These are not
generally included in most developed models. Here,
the aim of this work is to develop a theory based
on filled elastomers’ microstructure evolution to
explain softening phenomena. For this, we propose
to extend the formulation of the Gent model for
filled elastomers and we propose a new approach
for the hard-to-soft transformation that includes fill-
ers type.

MICROSTRUCTURE BEHAVIOR

Several authors24–26 showed that filler volume con-
centration in filled rubber affect the material’s micro-
structure, which can present particles in the follow-
ing states: individual dispersion of primary particle
with length scales 20—50 nm for small concentra-
tions; their cluster gives birth to filler aggregate with
length scales 100–200nm; and from filler aggregate
clustering we obtain filler agglomerate, which can
build a continuous network of particles, which is the
percolation concentration.

The microstructure of elastomers reinforced by
carbon black can be represented as a two-phase sys-
tem composed of the soft- and hard-domains like in
Mullins and Tobin12 concept. Here, the volume of
the hard domains includes total volume of the filler
and the occluded matrix volume, which is formed in
aggregates of the carbon black particles. The
occluded volume is immobilized because of the close
packing of the particles within the carbon black
agglomerates and increases effectively the initial vol-

ume fraction, u0
h, of the hard-domain as u0

h ¼ u0
oc þ

u0
f . The terms u0

f and u0
oc are the initial volume frac-

tions of the filler and the occluded matrix, respec-
tively. The soft-domain corresponds to the elasto-
meric matrix not occluded by the carbon black
agglomerates. Its initial volume fraction is denoted
by u0

s . The occluded volume does not contribute to
the deformation of the composite until rupture of
the agglomerates. Thus, the Mullins effect can be
described as an evolution of the hard domain, which
decreases because of the breaking up of the carbon
black clusters during deformation processes. The
released occluded matrix contributes to the deforma-
tion as an additional part of the elastomeric matrix.
Hence, the transformation of hard- to soft-domain
implies softening of the filled elastomers.
Medalia27 showed that effective volume occupied

by carbon black aggregates in a rubber can be
obtained by: u0

h ¼ u0
oc þ u0

f ¼ u0
f q with q ¼ (1 þ

0.02139DBPAbs)/1.46. Here, the DBPAbs indicates the
dibutyl-phtalate absorption (in cm3/100 g). We can
therefore get the volume fraction of the occluded do-
main by:

u0
oc ¼ q� 1ð Þu0

f (1)

In the nonstretched state (e ¼ 0), the material
composition is defined by the following relation-
ships:

u0
h þ u0

s ¼ 1; u0
h ¼ u0

oc þ u0
f ; u0

oc ¼ q� 1ð Þu0
f

(2a)

During deformation, the composition evolution
can be written in the following form:

uh þ us ¼ 1; uh ¼ uoc þ uf ; us � u0
s ; uh � u0

h

(2b)

Here, us, uh, uf, and uoc are soft, hard, particles,
and occluded volume fractions, respectively, and
u0
s , u

0
h, u

0
f , and u0

oc are the corresponding initial val-
ues. We assume that the decrease of the hard
domain in the filled elastomers is caused by the
deformation during loading but not during unload-
ing or reloading lower than previous loading. To
describe the evolution of the hard-domain volume
fraction as function of strain, we propose to use of
the generalized model of Oshmyan et al.29:

duh

de
¼ �Khsuh þ Kshus (3)

where Khs and Ksh are phase transformation kinetic
coefficients, which represent the transformation from

2 MOSSI IDRISSA ET AL.

Journal of Applied Polymer Science DOI 10.1002/app



hard-to-soft and from soft-to-hard domains, respec-
tively. These are defined by29:

Khs ¼ k0hs exp � Uhs�crh

kT

� � ¼ bhs exp brhð Þ
Ksh ¼ k0sh exp � Ushþcrs

kT

� � ¼ bsh exp �brsð Þ

(
b ¼ c

kT

(4)

Here, rh, rs are respectively the stresses in the
hard and soft domains, k is the Boltzmann constant,
c is the activation volume, T is the absolute tempera-
ture, Ush and Uhs are the activation energies and bsh
and bhs are preexponential coefficients. In our study,
we assume that structural transition from soft- to
hard-domain is neglected, which implies that bsh ¼
0. In fact, it is observed that several days are needed
to recover very slowly the stiffness, which is
decreased by the softening.14

Using the condition of bsh ¼ 0, we obtain a simpli-
fication of eq. (3) in as follows:

duh

de
¼ �Khsuh (5a)

After integration of eq. (5a) we get:

uh ¼ u0
h exp �Khseð Þ (5b)

The following expressions are also deduced:

e ! 0 ) uh ! u0
h (5c)

e ! 1 ) uh ! 0 (5d)

The two last eqs. (5c) and (5d) show that hard do-
main volume fraction is bounded by upper and
lower bound estimates. However, experimental con-
ditions do not permit the transformation of the
entire hard domains, particularly in the case of inde-
structible particles like carbon black. In this case,
uf ¼ u0

f , and only the occluded volume becomes
soft.

Using eqs. (2b) and (5b), we obtain the soft do-
main evolution in the following form:

us ¼ 1� u0
h exp �Khseð Þ (6)

Equations (5b) and (6) describe the filled elasto-
mers microstructure evolution during deformation
and also explain the softening phenomena pro-
duced in the material. In the next part, filled elasto-
mers’ mechanical behaviors are treated with a
reformulated form of Gent’s strain energy, which
takes into account fillers effect and microstructure
evolution.

MECHANICAL BEHAVIOR

Gent model

Elastomers exhibit complex mechanical behaviors.
For that, many constitutive models are built and are
focused on one or more experimentally observed
phenomena such as large strains, hysteresis, time
dependent response, and stress-softening, or Mullins
effect.10,30–33 In these models, a strain energy W is
used to characterize the material’s mechanical
behavior. Assuming isotropic and incompressible
elastomers, the strain energy is generally given as
function of the two first invariants of the left
Cauchy-Green stretch tensor B.

W ¼ W I1; I2ð Þ (7)

with

I1 ¼ trB; I2 ¼ 1

2
trB2 � trBð Þ2
h i

The true stress tensor is defined by the differentia-
tion of W with respect to B:

r ¼ �pI þ 2B
@W

@B
¼ �pI þ 2

@W

@I1
þ I1

@W

@I2

� �
B� 2

@W

@I2
B2

ð8Þ

where p is the hydrostatic pressure.
In this work, we propose to extend the Gent

model31 for rubber networks to filled rubbers. The
strain energy proposed by Gent32 is given by:

WG ¼ �E

6
Jm ln 1� J1

Jm

� �
¼ E

6
Jm ln 1� J1

Jm

� ��1

(9)

Here, J1 ¼ I1 � 3 and E is a modulus. Gent32

showed that this energy results in stresses, which
are closed to those given by Treloar’s physically
based model for rubbers and when J1 approaches Jm
the material reaches its fully extended state. This
means that Jm corresponds to the limiting polymeric
chain extensibility, which can be undergone by the
material.
The Cauchy stress tensor associated to the Gent

model is therefore given by:

r ¼ �pI þ E

3

Jm
Jm � J1

B (10)

As shown by Boyce,34 Chagnon et al.,35 and Hor-
gan and Saccomandi,36 the parameters E and Jm in
the Gent model are rather related to well-established
parameters for elastomers deformation behavior,
namely the rubbery modulus and the locking
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stretch. To show this equivalence for the modulus E,
Gent strain energy can be expressed in a series of
polynomial form:

WG ¼ E

6

X1
n¼0

1

nþ 1

Jnþ1
1

Jnm
(11a)

For small strains, the expression (11a) is reduced
to the first term:

WG ¼ E

6
J1 ¼ E

6
I1 � 3ð Þ (11b)

The equivalence of this eq. (11b) with the Neo-
Hookean strain energy WNH ¼ l

2 J1 ¼ l
2 I1 � 3ð Þ, which

is valid in the range of small strains, implies:

E ¼ 3l ¼ 3nhk (11c)

where n is the chain density, T is the absolute
temperature, k is the Boltzmann constant, and l the
shear modulus (rubbery modulus).

The relation between the parameter Jm and the
mechanical parameter N can be obtained by the use
of the current chain stretch expression kchain

30 and
its limiting value (locking stretch) at full stretch con-
dition. The locking stretch is given by klockchain ¼ N1=2,
where N is the number of statistical links in the
chain between two chemical crosslinks. The chain
stretch is given by:

kchain ¼ I
1=2
1 ffiffiffi
3

p ¼ J1 þ 3ð Þ1=2ffiffiffi
3

p (12a)

At full stretch condition, the parameter J1 tends to
its limiting value Jm and equivalently the chain
stretch tends to the locking one:

J1 ! Jm ) kchain ! klockchain ¼ N1=2 (12b)

From eqs. (12a,b), we can therefore get:

Jm þ 3ð Þ1=2ffiffiffi
3

p ¼ N1=2 ) Jm ¼ 3 N � 1ð Þ (12c)

Horgan and Saccomandi36 and more recently
Mossi-Idrissa et al.37 showed that Gent model for
incompressible rubbers is a very good qualitative
and quantitative alternative to the comparatively
complicated molecular models involving the inverse
Langevin function.

Extension of the Gent model to filled rubber

Here, the filler particles effect will be studied in
order to extend Gent strain energy to reinforced

elastomers. Hence, the microstructure evolution,
which happens during deformation, is introduced in
the stress–strain relationship. One of the first and
simplest estimation of the effective properties is that
of Einstein38,39 who derived the increase in viscosity
caused by a suspension of spherical particles in a
viscous fluid. Later Smallwood22 applied the same
approach, for filled solids with spherical filler par-
ticles at low-concentration, to predict the Young
modulus.

Ee ¼ Em 1þ 2:5uf

� 	
(13)

where uf is the volume concentration of filler and
Em is the elastic modulus of the matrix.
In this eq. (13), no account was taken of the inter-

action between neighboring filler particles. Guth and
Gold40,41 considered the interaction between pairs of
particles by adding an extra term involving the
square of the volume concentration, and proposed
the following expression for the effective Young
modulus:

Ee ¼ EmX (14)

with X ¼ 1þ 2:5uf þ 14:1u2
f is an amplified factor.

This equation shows that the modulus increases in
reinforced elastomers because of the distortions
introduced by the particles in the material network.
Smallwood22 also showed that for low-concentration
of fillers, uf < 0.1, eq. (13) fitted the experimental
elastic behavior lightly reinforced elastomers, but se-
rious departures from the experiment results
occurred higher fillers volume fractions. Guth41

showed that the behavior of rubber containing car-
bon black, which consists essentially of spherical
particles, conformed to eq. (14) up to volume frac-
tion of about 0.3. We should note that there exist
several other models for the estimation the effective
properties in a composite materials such as the
bounding estimates.41–48

The strain energy, W*, of reinforced elastomers,
which presents soft- and hard-domains is found from
the stain energy of the deformable matrix, Ws, corre-
sponding to the soft-domain (since the hard phase is
assumed not to contribute to deformation). Hence:

W� ¼ usWs þ uhWh

here eh ¼ 0 ) Wh ¼ 0



jj o W� ¼ usWs (15)

Using Gent model for the soft domain, we obtain
the following equation:

W�
G ¼ usWGS ¼ �us

Em

6
Jm ln 1� I1m � 3

Jm

� �
(16)
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where WGS is the Gent strain energy for the soft do-
main and I1m is the average first invariant stretch of
this domain.

In filled elastomers, the matrix is prevented from
deforming uniformly by adhesion of the rubber to the surface of the particles and thus the overall

apparent strain is less than the strains occurring
locally. Mullins and Tobin13 have proposed the
notion of amplified strain to estimate the uniaxial
strain in the matrix. This relation can be shown
when the stress–strain relationship for the filled elas-
tomer, r ¼ Eee ¼ Ee (k � 1) ¼ EmX (k � 1), and
unfilled elastomers, r ¼ Em (K � 1), is considered
for the same average stress. The amplified stretch
expression is therefore deduced as K ¼ X(k � 1) þ 1
where k is the apparent macroscopic axial stretch in
the filled rubber. In the work of Govindjee and
Simo,7 they proposed amplifying the total deforma-
tion gradient in order to obtain the relation between
the volume average strain quantities and the matrix
quantities. This can be written in the following form:

Figure 1 Schematic of the difference of the aggregate
microstructure before (a) and after (b) deformation.

Figure 2 (a) Loading-unloading-reloading cyclic response
predicted the new constitutive model. The material param-
eters: bhs ¼ 0.15 s�1, uf ¼ 0.19, b ¼ 2.10�3, E ¼ 1 MPa, Jm
¼ 60, DBPAbs ¼ 120 cm3/100 g. (b) Soft volume fraction
evolution for the new constitutive model during stretching
represented in Figure 2(a).

Figure 3 Model prediction compared to Mullins and
Tobin experimental results where the elastomer is GRS
filled with carbon black S301. The material parameters: bhs
¼ 0.18 s�1, uf ¼ 0.2, b ¼ 9.10�3 MPa�1, E ¼ 0.7 MPa, Jm ¼
56, DBPAbs ¼ 113 cm3/100 g.

Figure 4 Model prediction compared to Mullins and
Tobin experimental results where the elastomer is the nat-
ural rubber filled with carbon black S301. The material pa-
rameters: bhs ¼ 0.18 s�1, uf ¼ 0.19, b ¼ 4.10�2 MPa�1, E ¼
0.9 MPa, Jm ¼ 28, DBPAbs ¼ 113 cm3/100 g.
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Fm ¼ (F � ufR)/(1 � uf) with F ¼ RU. Here, F and
Fm are respectively the volume average and matrix
deformation gradients, R is the rotation tensor, and
U the right stretching tensor. As in the work of Berg-
strom and Boyce,49 we propose to use the amplifica-
tion of the first invariant stretch I1, which corre-
sponds to Mullins and Tobin stretch amplification
with an extension to a general three-dimensional de-
formation state:

I1m ¼ X I1 � 3ð Þ þ 3 (17)

where I1 is the average first invariant stretch of the
composite material. Using eq. (17) in the reinforced
elastomers strain energy of eq. (16), we can deduce
our proposed extension of the gent strain energy to
filled elastomers:

W�
G ¼ �us

Em

6
Jm ln 1� X I1 � 3ð Þ

Jm

� �
(18)

On the basis of eqs. (13) and (14), the following
expression for the amplification factor X was
derived16: X ¼ 1þ 3:5 1� usð Þ þ 18 1� usð Þ2.

From the proposed extension of Gent strain
energy for filled elastomers [eq. (18)], we get the cor-
responding Cauchy stress tensor:

r�
G ¼ �pI þ us

EmX

3

Jm
Jm � X I1 � 3ð ÞB (19)

In summary, the proposed constitutive model for
stress–strain behavior of filled elastomers can be
summarized by the following constitutive relations:

r�
G ¼ �pI þ us

EmX

3

Jm
Jm � X I1 � 3ð ÞB (20a)

X ¼ 1þ 3:5 1� usð Þ þ 18 1� usð Þ2 (20b)

us ¼ 1� u0
h exp �Khseð Þ (20c)

u0
h ¼ u0

f ð1þ 0:022139DBPAbsÞ=1:46 (20d)

RESULTS AND DISCUSSION

Equation (20) which represent the constitutive model
are used to predict the stress–strain response of
filled elastomers including soft-domain evolution. In
the first application, we simulated loading unloading
under uniaxial tension. The predicted stress–strain
response is shown in Figure 2(a) and the corre-
sponding evolution of the soft phase volume fraction
is shown in Figure 2(b). The selected material
parameters are also shown in these figures. In Figure
2(a), the stress–strain behavior with cyclic loading
and unloading. The first cyclic shows loading until
e ¼ 2 and unloading to e ¼ 0; in the second cyclic,
we have reloading until e ¼ 3 and unloading to e ¼ 0
and the third cyclic corresponds to reloading until
e ¼ 4 and also unloading to e ¼ 0. To validate this
model, it is compared to Mullins and Tobin11 vul-
canized materials’ data for GRS and natural rubbers
filled with carbon black S301 with DBP absorption
equal to 113 cm3/100 g.50 This comparison is
reported on Figure 3 for filled GRS and Figure 4 for
filled natural rubber. These comparisons show a
fairly good agreement between the model predic-
tions and the experimental stress–strain response. In
our model, the two parameters that characterize the
filler particles in the composite are filler volume
fraction and DBP absorption. In Figure 5, the effect
of the volume fraction is shown by changing its
value, 0.1, 0.15, and 0.20. As expected, we can
observe in this Figure 5 that the higher filler volume

Figure 5 Prediction of the effect of the filler volume frac-
tion on the stress–strain response. The material parame-
ters: bhs ¼ 0.15 s�1, b ¼ 2.10�3 MPa�1, E ¼ 1 MPa, Jm ¼ 60,
DBPAbs ¼ 120 cm3/100 g.

Figure 6 Prediction of the effect of the type of carbon
black on the stress–strain response. The material parame-
ters: bhs ¼ 0.15 s�1, uf ¼ 0.20, b ¼ 2.10�3 MPa�1, E ¼ 1
MPa, Jm ¼ 75, N660/DBPAbs ¼ 91 cm3/100 g, N330/DBPAbs

¼ 101 cm3/100 g, N550/DBPAbs ¼ 120 cm3/100 g.

Journal of Applied Polymer Science DOI 10.1002/app
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fraction leads to a stiffer stress–strain response. In
Figure 6, three types of carbon black (N660/DBPAbs

¼ 91, N550/DBPAbs ¼ 120, N330/DBPAbs ¼ 101) are
used for the same filler volume fraction. In this fig-
ure, the type of the carbon black affects the stress–
strain response. Stiffer response is obtained for car-
bon black with higher DBP, which means higher
volume fraction of the hard domain (higher agglom-
eration with increased occluded phase).

To verify our model’s ability to correctly predict the
stress–strain response under different cyclic states of
deformation, Figures 7(a–c) are the predicted results
for uniaxial tension where the chains extend in one
direction (k1 ¼ k, k2 ¼ k�1/2, k3 ¼ k�1/2), equi-biaxial
tension, which offers two principal tensile stretching
(k1 ¼ k, k2 ¼ k, k3 ¼ k�2) and plane strain tension
(k1 ¼ k, k2 ¼ 1, k3 ¼ k�1). The corresponding soft-
domains volume fraction evolutions are shown in
Figure 7(d). Our predicted stress–strain response
under different cyclic stretching conditions is in accord
with the results obtained by Qi and Boyce.16

CONCLUSION

In this article, the combination of the extended Gent
model with a new kinematic model for phase trans-
formation lead to a simple and original approach that
correctly predicts the stress–strain behavior of filled
elastomers, which takes into account Mullins effect
(softening effect). The proposed model takes into
account the type of carbon black via the DBP absorp-
tion. Although neglected in this article, the proposed
model has the ability to predict stiffness increase,
which happens slowly by setting bsh different from
zero. This is not possible with damage theories based
only on the breakdown of elastomers links of Govind-
jee and Simo7 or Marckmann et al.10 The constitutive
model gives a fairly good agreement with experimen-
tal data in the literature and also proves its ability to
be applicable to different states of deformation. Our
approach can also be easily implemented in computa-
tional codes such as FEM for three-dimensional simu-
lations. The 3D nature of our approach can be justified

Figure 7 (a) Prediction of the stress strain response for loading-unloading-reloading under uniaxial tension. The material
parameters: bhs ¼ 0.24 s�1, uf ¼ 0.2, b ¼ 2.10�3 MPa�1, E ¼ 1 MPa, Jm ¼ 75, DBPAbs ¼ 120 cm3/100 g. (b) Prediction of the
stress–strain response for loading-unloading-reloading under equi-biaxial tension. The material parameters: bhs ¼ 0.24 s�1,
uf ¼ 0.2, b ¼ 2.10�3 MPa�1, E ¼ 1 MPa, Jm ¼ 75, DBPAbs ¼ 120 cm3/100 g. (c) Prediction of the stress–strain response for
loading-unloading-reloading under plane strlain tension. The material parameters: bhs ¼ 0.24 s�1, uf ¼ 0.2, b ¼ 2.10�3

MPa�1, E ¼ 1 MPa, Jm ¼ 75, DBPAbs ¼ 120 cm3/100 g. (d) Predicted evolution of the soft phase volume fraction for the
loading cases in Figure 7(a–c).

CONSTITUTIVE MODEL FOR STRESS–STRAIN RESPONSE 7

Journal of Applied Polymer Science DOI 10.1002/app



by the assumption of isotropic softening and by the
predictive capability of our approach under multi-
axial loading.

The interest of the new model is that we propose
a new approach based on combining the Gent model
for stress–strain relation with a new model for hard-
to-soft phase transformation. We note that the Gent
model does not involve the complex Langevin func-
tion, which is used in the 8-chain model. We believe
that our new approach is a predictive approach that
is much simpler for numerical implementation such
as in FEM codes.
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25. Heinrich, G.; Klüppel, M.; Viglis, T. A. Curr Opin Solid State

Mater Sci 2002, 6, 195.
26. Vilgis, T. A.; Heinrich, G.; Klüppel, M. Reinforcement of Poly-
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